Lanthanum, poem from the “Periodic Table of Poetry” series, #57, La) from the Chicago poet Janet Kuypers

Lanthanum

Janet Kuypers

(poem from the “Periodic Table of Poetry” series, #57, La)
6/27/14

When I went to the after party
of a recent Chicago live play,
an actor from the play
asked me if I was an actor.
I said no, I write,
I run a poetry open mic,
occasionally do features,
and the actor told me,
then you are an actor.

And my story has not
been produced as a play,
and directors aren’t
knocking down my doors
to offer me a starring role.
At my open mic
I applaud other readers,
collect money for features,
and although I perform
in a show sometimes,
a day or two after my show
I am quickly forgotten,
and I still,
otherwise,
seem to slip into the woodwork.

#

You know, I was thinking about it:
if you look at the Periodic Table,
you know elements are grouped
by weight and therefore by properties,
but there’s this block of elements
sticking out at the bottom of the Table.
It’s like scientists didn’t know
what to do with some of these elements,
so called them Lanthanides,
from the Greek word “lanthano”
(meaning “to escape notice”),
and then moved them out of the way
on the Periodic Table.

And that first element in the series
has the name from the series, Lanthanum,
and maybe it is like an actor
who appears in film after film
always portraying different roles
but not often taking the lead. ..
Lanthanum’s joined with metal elements
to make them stronger, because
even when added to lenses
or the accuracy of radio carbon dating,
everything is sharper, stronger and more accurate —
Lanthanum’s supporting role
makes everything stand proudly
in the lime light.

Hafnium, poem from the “Periodic Table of Poetry” series by Chicago poet Janet Kuypers

Hafnium

Janet Kuypers

(poem from the “Periodic Table of Poetry” series, #72, Hf)
6/27/14

I heard that the element Hafnium
is named after the literal Latin word hafnium,
which is Latin for Copenhagen,
the capital of Denmark.

And you know, I’ve been to Copenhagen,
and the one touristy thing we had to do
was go to the waterfront
to see the legendary statue
of the Mermaid on the rock,
and photograph it like every foreigner
before we left town.
So we walked to the water,
looked at the statue.
Not really sure
what’s so amazing about it;
it’s not that big,
I don’t even know the story behind it.
But everyone new to Copenhagen
should, for some reason,
check it out.

And the more I thought about it,
the more I realized that the element Hafnium
(named after the city where it was first isolated)
had a lot in common with that mermaid.
Because at first impression
(and when it was first discovered),
the element doesn’t seem to serve much of a purpose.
    Good thing, I suppose,
    since it seems so rare
    on this planet…
But as scientists looked at Hafnium more,
they realized it can form super-alloys,
which withstand very high temperatures
(which is great for parts for space vehicles),
Hafnium carbide has the highest melting point
of just two elements (and a Tungsten carbide
with Hafnium has the highest melting point).
But it’s scarcity makes Hafnium expensive –
because I heard that nuclear power plants
can pay a million dollars
just for the neutron absorbing Hafnium rods

So I guess it would make sense
why scientists consider Hafnium
as special as that little mermaid
at Copenhagen’s water’s edge.
Because things may seen benign at first,
but only when you search deeply
do you find their true value and beauty.

Dubnium, poem from the “Periodic Table of Poetry” series by Chicgo poet Janet Kuypers

Dubnium

Janet Kuypers

from the “Periodic Table of Poetry” series (#105, Db)
(8͏23͏14)

Over the years, the U.S. and Russia
have fought over all sorts of things —
thermo-nuclear bombs,
inter-continental ballistic missiles
to carry those bombs,
even getting men into space,
or winning the most Olympic medals,
or even… Making new chemical elements.

You may think of the Cold War
when I mention the U.S. and Russia,
oh, I’m sorry, the Soviet Union,
but you could probably also think
of the Transfermium Wars
where both countries spilled a lot of

ink

in an effort to come out the winner.

Because it was both Dubna in the USSR
and Berkeley California in the U.S.A.
that claimed the discovery of this element,
but after the Cold War, the IUPAC
(oh, don’t make me spell that out for you,
the International Union of Pure
and Applied Chemistry, the group
that decides the names for elements)
said that credit for this discovery
should be shared between the two.

But if the two countries no longer
battled over who discovered it first,
they could at least then argue
over the naming rights for the element…
The Soviets wanted to call it nielsbohrium
for the Danish nuclear physicist Niels Bohr.
The Americans wanted to call it hahnium
for the late German chemist Otto Hahn.
SO, American and Western Europeans
started calling the element hahnium,
while the Soviet Union and Eastern Bloc
countries went on calling it nielsbohrium.

So the IUPAC gave the name unnilpentium
(one zero five, Unp) as a temporary name.
Though the two countries still disagreed
over the naming of this new element,
The IUPAC then decided on Dubnium,
to honor the Russian discovery location.
I think the only reason it got to be named
after Dubna is because America had
so many elements already named for them
(like berkelium, californium, americium),
and if the elements AROUND one oh five
(rutherfordium and seaborgium) are U.S.,
Dubnium can offset the American discoveries.

So yeah, even after all these decades
of competition and mistrust,
a third party had to come in — repeatedly —
to try to settle our squabbles,
kind of like the UN…

But now that we’re got the name
figured out for element one oh five,
maybe now we can learn about Dubnium,
right?
So I did a little research, and lo and behold,
scientists haven’t been able to figure
this element out either.
Melting point? Unknown.
Boiling point? Unknown.
Density? Unknown…
I guess that’s what we get
for battling with the Soviet Union
(well, okay, later Russia)
to try to create a highly radioactive metal
which doesn’t even occur in nature.
Only a few atoms have ever been made,
so I guess our “creation”
is for research interest only.

…But wait a minute, we just created
a radioactive element — should we worry
that if this spreads we’ll turn
into a radioactive planet?
Will our progenitors
be a radioactive species?

Well, that might sound like a thrill
for comic book guy, but Dubnium
is so unstable that it would decompose
so quickly that it’ll never affect humans.
And because of Dubnium’s half life
of half a minute (that’s short, by the way),
there’s no point in even worrying
about it’s affects on the environment either.
So as I said, sorry comic book guy,
but this won’t turn us
into radioactive people
or kill us by radiation…
Hmmm, maybe the United States
and Russia once worked
on trying to blow each other up
with nuclear bombs and missiles,
but when it came to the Dubnium battles
in the Transfermium Wars, maybe for once
we were both working at the same time
on something for science
that will only help us learn.

“Diburnium”, bonus sci-fi poem from the “Periodic Table of Poetry” series by Chicgo poet Janet Kuypers

Diburnium

Janet Kuypers

(bonus poem from the “Periodic Table of Poetry” series, #122, Db)
7/27/14

Spending another Saturday night alone,
I watched an old episode of Star Trek.
In this episode, Captain Kirk, McCoy and Sulu
were beamed down to a planet
with no magnetic field.

After the Enterprise
disappeared from their sensors,
Kirk hears Sulu say, “The basic substance
of this planet is an alloy of Diburnium-osmium.”

And my brain stopped
when I heard this elemental scrap.
I wracked my brain, ‘wait a minute,
I know osmium, it’s the densest metal
in the Periodic Table. But Diburnium?’

I know Star Trek mentions many elements
and isotopes when they talk science,
hydrogen, it’s isotope deuterium,
transparent aluminum, even dilithium
(which scientists are trying to use now
to boost speed for long distance space travel)…
So I had to research this elusive Diburnium.

Now, the Memory Alpha at Star Trek Wiki
confirmed that an abandoned Kalandan outpost
was built on an artificial planet
composed of a Diburnium-osmium alloy. And
according to the Starfleet Medical Reference Manual,
the element Diburnium had the symbol Db,
atomic weight 319, and atomic number 122.
Okay, this poet’s paying far too much attention
to the Periodic Table, but I know
that right now 118 is as high as the Table goes,
but like a Periodic Table addict
I still had to look into science fiction
that piqued my curiosity.
The Star Trek Freedom Wiki explained
that Diburnium is a metallic element
with phaser-resistant qualities.
Okay fine, maybe I’ll worry
about these undiscovered elements
only once they’re discovered,
because without actual phasers
to worry about in the present,
I think I’ll stick with the elements
we do know right now…

Bohrium, from the “Periodic Table of Poetry” series by Chicgo poet Janet Kuypers

Bohrium

Janet Kuypers

(from the “Periodic Table of Poetry” series, #107, Bh)
8/31/14

This isn’t boring.
You won’t be bored with the details —
anyone interested in different kinds of attraction
should listen close…

Because Bohrium isn’t boring
if you find fusion fascinating.
Think about it for a minute —
what are the conditions
that bring two bodies together
so they join to create something new?

#

Think back the the times of year
when you have met people you later dated.
Was it in the summertime,
when the temperature was high,
when you were feeling all hot and bothered
when you saw that special someone
that you were instantly attracted to?
Maybe you were taking a break from school
or going to the beach to relax,
make yourself look just perfect
for that one chance encounter
that will lead to so much more…
        (Hate to tell you this,
        but that hot weather attraction
        is a lot like a hot fusion…
        Chemically speaking, after atoms are split apart,
         “fusion” is the art of getting different parts
        to come together to create something new.
        The sun’s a natural fusion reactor.
        Nucear reactors perform fission to split atoms,
        nuclear fusion, or “hot fusion” uses all it’s energy
        to slam those elemental atoms into each other,
        so they’re more likely to break apart
        and their parts can create new elements or isotopes.
        This is how scientists discover synthetic elements.)

But sometimes, sometimes, that attraction can come
not when the temperature is sizzling hot,
but when things seem bitter cold
and warm bodies have a tendency
to group together to conserve their heat.

I suppose you can say I     am “bonded” with someone now,
and when we met on a train commuting from work
it was the middle of January in a cold Chicago winter,
I was fully adorned in a winter coat, a hat,
gloves, a headband for my ears,
boots, a scarf covering my face.
Who knows, maybe that not-so-hot weather
gave us more of a reason to bond,
since it was only three months after we met
that we became engaged for marriage.

        (And I hate to say this, but scientifically
        there is a method of fusion for this as well.
        Cold fusion is technically the fusion of things
        merely at room temperature
        and not after nuclear super-excitement.)

And as I said, I didn’t want to bore you with these details,
but there are a lot of ways fusion like that
can even help in the discovery of new elements,
like Bohrium.
Because back in eighty one, element one oh seven
was discovered after bombarding bismuth two of nine
with accelerated nuclei of chromium fifty four.
They only produced five atoms of Bohrium 262,
but man, were they excited…
They were so attracted to Niels Bohr
that they wanted to name their element
nielsbohrium for the Danish physicist.
But wait, Russian scientists originally
wanted to name element one of five nielsbohrium,
so the Germans here at one of seven said
hey, we wanted to give props to Neils Bohr
for his work in cold fusion (since that was used
for the discovery of this element).
So the Russians relented,
but the element naming commission
said, wait a minute, we’ve never
named an element after the full name of anyone,
so, after they temporarily called it unnilseptium
(Uns, Latin for one oh seven),
they settled for just the last name
and crowned this new gem Bohrium.

And yeah, there are tons of isotopes of Bohrium
from all that atom smashing and bonding
with half lives from a quarter millisecond
to ninety minutes,
but there aren’t many atoms of the stuff,
so all of it’s properties are only extrapolated
from knowing it’s place in the Periodic Table.
But still, know how fusing things together
is the only way to make this new element,
makes you put a whole new spin on bonding,
attachment, creating something new,
that almost puts a glimmer in your eye
and makes you smile again.